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a b s t r a c t

Aiming at the fundamental issue of optimal design of discrete levels of detail (LOD) for the visualization

of complicated 3D building fac-ades, this paper presents a new quantitative analytical method of

perceptible 3D details based on perceptual metric. First, the perceptual metric is defined as the

quantitative indicator of the visual perceptibility of fac-ade details at a given viewing distance. Then,

according to the human vision system, an algorithm employing 2D discrete wavelet transform and

contrast sensitivity function is developed to extract the value of perceptual metric from the rendered

image of the fac-ade. Finally, a perceptual metric function is defined, based on the perceptual metric

values extracted at equal interval viewing distances. The minimum detail redundancy model is then

proposed for the optimal design of discrete LODs. This method provides a quantitative instruction for

generating discrete LODs. The experimental results prove the effectiveness and great potential of this

method.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Online virtual globe tools, led by Google Earth, are dramatically
changing the way we interact with spatial data from 2D maps to
the 3D Virtual Geographic Environments (VGEs) [1,2]. Up to now,
3D representations of geographic information in computers have
been known as VGEs, which are of increasing importance in urban
areas and provide more accurate and flexible mathematical
models, effective tools, and user interfaces for geospatial com-
munication. Therefore, 3D models in VGEs do not just have
photorealistic appearances, but they are also accurate, with
credible geometry and topology information of the built environ-
ment, achieved by making full use of advanced 3D measurement
(such as imaging, LIDAR, GIS, and CAD) [3].

When representing a building, fac-ades are often the most
important elements, as they contain the exterior geometric details
of the building. However, the number of polygons that represents
the 3D geometry of complicated fac-ades always exceeds the
rendering capability of the hardware; a trade-off between
complexity and performance is required. A preferred solution is
the level of detail (LOD) technique, which increases the efficiency
of rendering by reducing insignificant geometry for visualization
[4]. One of the bottlenecks of this technology for complicated 3D
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fac-ades is the automatic generation of discrete levels of detail
(LODs). Given the target number of detail levels, a collection of
LODs are produced based on manually assigned control factors,
such as a target number of polygons with equal interval partitions,
or exponential interval partitions, or employing trial and error
based on plenty of pre-simplified models [5]. However, assigning
various factors manually to generate LODs for the original model
is usually not optimal. Inevitable detail redundancy between LODs
brings about excessive rendering cost. This paper proposes an
optimal design approach for discrete LODs of complicated 3D fac-
ades based on analyzing the perceptibility of fac-ade details at
various viewing distances, which prevents the costly pre-
simplification stage and provides quantitative instructions for
the construction and management of discrete LODs.

This paper is organized as follows. The related work on discrete
LOD is reviewed in Section 2. Section 3 introduces the definition of
the perceptual metric and perceptual metric function. Section 4
presents the algorithm based on the perceptual metric function
for LOD optimization, and Section 5 discusses the experimental
results. Finally, the conclusions are presented in Section 6.
2. Related work

Discrete LOD is a traditional approach of the LOD technique,
first proposed by Clark in 1976 [6]. The most important
advantages of this kind of LOD are its simplicity, high efficiency,
and the support of offline preprocessing [4], which make it
suitable for visualization of complicated 3D fac-ades. The
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generation of a collection of discrete LODs for such models
comprises the following steps: first, determine the target
number of detail levels; second, determine the proper control
factor for each detail level, such as the number of polygons; and
third, generate the LODs [3].

The proper target number of detail levels depends on various
factors including the rendering capacity of the visualization
system, the complexity of model, etc. As a result, it is hard to
determine fully automatically. Moreover, the visualization system
usually supports a fixed number of LODs, so the target number has
to be selected manually.

Determining the control factor for each detail level is very
important to the discrete LOD since models are often too complex
to be simplified in real-time or for the simplification operations to
be pre-recorded by progressive meshes [7]. As a result, most of the
existing approaches for determining the detail level are based on
pre-simplification processes. The original model is simplified to
produce plenty of candidate LODs according to certain criteria,
such as screen-space errors or object-space errors. Then proper
LODs are selected by evaluating the errors of the candidates [4,8].
Although more sophisticated approaches based on the human
vision system (HVS) have been proposed [9–11], it is too costly to
pre-simplify a complicated 3D fac-ade into a number of candidates.
On the other hand, the target number of polygons and other
control factors are also adopted to define each detail level, such as
generating a collection of LODs based on pre-estimated runtime
Fig. 1. The viewing frustum.

Fig. 2. The computing of d1.
budgets [12], but it is hard to estimate the budgets accurately in
an offline fashion.

To produce the LODs, various automatic or semi-automatic
simplification algorithms have been comprehensively reviewed by
David et al. and Cohen and Manocha [4,13].

In conclusion, there is still no good solution to the precise
analysis and design of LODs for complex 3D models such as
component-structured building fac-ades, which hinders the prac-
tical use of discrete LOD. In the following sections, a new idea
about the quantitative analysis of the perceptibility of geometric
details is presented; such perceptual knowledge is extracted from
the rendered images of a 3D facade, which is useful to guide the
design of the LODs.
3. Perceptual metric and perceptual metric function

3.1. Definition of perceptual metric

The process of human visual perception of 3D models consists
of two successive stages. First, based on given parameters, a
virtual camera samples the 3D model. This is called the 3D
projection. Its result is a rendered image on the screen in which
primitives less than the pixel resolution of the display are invisible
to the viewers. Second, visual perception of the rendered image is
generated through the retina, visual pathways, and finally the
visual cortex [14]. This stage is modeled by the human vision
system (HVS). Details displayed on the screen that are beyond the
capacity of human visual perception are filtered out in this stage.

In order to quantify the visual perceptibility of the details in
the 3D model, a perceptual metric (PM) is defined as

PM¼ VPs=TPs ð1Þ

where VPs is the number of pixels representing the perceptible
details of the model in the rendered image and TPs is the number
of pixels representing the total details of the model in the
rendered image. These two numbers of pixels indicate the
quantitative difference between the two stages of visual percep-
tion. The ratio between these two numbers, called PM, therefore
indicates the perceptibility of geometric details. By means of PM,
the geometric LODs of a 3D model can thus be quantitatively and
intuitively analyzed.

3.2. Calculation of perceptual metric

In order to obtain a reliable and accurate PM, the two stages of
perception should be quantified. Before rendering, a view frustum
is defined as illustrated in Fig. 1 [15]. The 3D model is then
projected onto the projection plane according to the perspective
projection transformation. Placing the model in the center of the
sight, the number of non-background pixels can be counted as the
number of pixels that represent the object in the rendered image.

However, restricted by the viewing frustum, this evaluation is
not accurate when the model is near to the camera because the
clipping plane will eliminate that part of the model outside the
view frustum. Therefore, d1, where the model is shown maximally
on the screen, is set as the beginning of the evaluation, as
illustrated in Fig. 2. The equation to calculate d1 is as follows:

d1 ¼ R=sinðy=2Þ ð2Þ

where R is the radius of the minimum bounding sphere of the
model measured in meters and y is the field of view (FOV) of the
virtual camera. The details of the visible surface of the model are
considered to be entirely displayed at d1. Then,

TPs¼ Pn1 ð3Þ
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where Pn1 is the number of pixels that represent the object in the
image rendered at the viewing distance d1.

As shown in Fig. 3, after rendering the image of the 3D model, a
HVS model is introduced to simulate the result of visual
perception. Then the number of pixels represented the
perceptible details in the rendered image can be calculated
based on the result. In HVS, the contrast sensitive function (CSF)
is one of the most important issues for the generation of vision
because it concerns the decreasing sensitivity for higher spatial
frequencies [16]. This property fits the CSF well for the LOD
analysis because the imperceptible details on the surface of the
model are usually small concave or convex shapes, which
represent relatively high spatial frequencies in the rendered
image. There are both luminance CSF and color CSF. However,
color CSF has proved to be related to specific applications, and
there is still no good definition of it [17]. Moreover, color
contributes little to the identification of details [18]. As a result,
luminance CSF is employed to construct the HVS filter.

The vision simulation procedure includes three key steps: 2D
discrete wavelet transform (DWT) decomposition, HVS filtering,
and 2D DWT reconstruction. To implement CSF precisely, the
image has to be transformed from the spatial domain to the
frequency domain. Among many existing transform approaches,
the 2D DWT better fits the HVS model because the 2D DWT
decomposition is similar to the multiple channel models of the
HVS, which allows the processing to act on each spatial frequency
channel independently [16]. It also retains the frequency as well
as the spatial information of the signal, which supports the
further extension of other perceptual effects such as masking. The
Daubechies 9/7 bi-orthogonal wavelet was selected because of its
fitness for image processing [19].

After the DWT composition, CSF is implemented to process the
wavelet coefficients. As a more precise approach, the adaptive
Fig. 3. The vision-simulation process.
approach is adopted [20], which makes use of the finite impulse
response (FIR) filter rather than employing simple weighting
factors to implement CSF. Taking the observing distance from the
human eyes to the screen and the screen resolution into account,
the CSF is mapped as a modulation function to the corresponding
frequency band in the down-sampled domain to construct the
filters. Then the filters are employed to convolute with the wavelet
coefficients.

Finally, the inverse DWT transform is carried out to reconstruct
the filtered wavelet coefficients. The vision-simulated image is
then generated, in which the imperceptible details are blurred and
the perceptible details are retained. The number of pixels having
different values between the rendered image and the vision-
simulated image indicates the quantity of the imperceptible
details. So VPs is calculated by

VPs¼ Pn� IPn ð4Þ

where Pn is the number of pixels of the object in the rendered
image and IPn is the number of pixels showing different values
between the rendered image and the corresponding vision-
simulated image.

The PM is then computed as

PM¼ ðPn� IPnÞ=Pn1 ð5Þ
Fig. 4. The computing of df.

Fig. 5. Illustration of LODs design.
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3.3. Perceptual metric function

Viewing distance is the most important parameter to the
discrete LOD [21]. Therefore, the quantitative analysis of LODs
Fig. 6. Four fac-ades of th

Fig. 7. The rendered image and its 300% zoom-in image (top); the vision simulated im

zoom-in image (bottom).
should be based on exploring the relationship between viewing

distance and the perceptibility of model details, which is defined
by the perceptual metric function PM(d). A scheme in which d

increases from near to far in order to render the model with equal
e great shrine hall.

age and its 300% zoom-in image (middle); the visual difference map and its 300%
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intervals is employed to obtain a series of PM values. The
expression for PM(d) is then obtained by the least squares fitting
of these values.

The domain of viewing distance is defined as [d1, df], where d1

has already been obtained by Eq. (2) and df is the furthest
boundary of viewing distance when the model projected on the
screen reaches the size of one pixel in the screen. When d is larger
than df, the model will not be displayed. Based on the perspective
projection, the projection size of the model is calculated by the
following equation, as illustrated in Fig. 4.

Rprj ¼ ðl � RÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

f � R2
q

ð6Þ

where Rprj is half of the length of the projected model in the
projection plane and l is the distance from the projection plane to
the camera center, all measured in meters. Rpix, the number of
pixels that represent the Rprj on the screen, is calculated by
equation

Rpix ¼ r � Rprj=0:0254 ð7Þ

where r is the resolution of the screen measured in dots per inch
(dpi), 0.0254 is the conversion factor between meter and inch.
When Rpix is equal to 0.5 pixels, the projected length of the model
Table 1
The results of the evaluation for the vision simulation where the VDP shows that

0.1249% of pixels in the image have a probability of 75% of being noticed as

different, whereas 0.0648% of pixels have a 95% chance of being detected.

Metrics Results

VDP 0.1249% (75%) 0.0648% (95%)

SSIM 99.5637%

The SSIM returned a value of 99.5637% to indicate the level of perceivable

differences between these two input images. If the value is equal to 1, the two

images are perceptually equivalent.

Fig. 8. The VDP result (left) and the SSIM result (right). (For VDP, the green pixels show

that differences will be noticeable. For SSIM, the darker areas show greater visual diffe

Fig. 9. The first six im
is equal to one pixel. The furthest boundary df is then calculated
by

df ¼ R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þð2r � l=0:0254Þ2

q
ð8Þ

For a 3D model, the value of PM(d) decreases with the increase
of viewing distance. The reasons are as follows. First, due to the
perspective projection, the projection size of the model decreases
when the model moves further away. Second, the spatial
frequency of details in the model perceived by human eyes will
grow higher when the model becomes smaller on the screen.
Therefore, more details will be filtered out by HVS, which results
in the decrease in the number of pixels that represent the
perceptible detail.
4. Optimal design approach of LODs

Based on the perceptual metric function, the relationship
between viewing distance and the perception of details is
mathematically described. The LODs of the 3D model can thus
be analyzed by this function. For visualization applications,
optimized LODs should be output sensitive; thus the redundancy
of details between detail levels in discrete LOD should be
minimized.

The total quantity of details (TDs) of discrete LODs can be
represented by a piecewise function of d

TDðdÞ ¼

TD0; dAð0; d1Þ

TD1; dA ½d1; d2Þ

. . . . . .

TDn�1; dA ½dn�1; dnÞ

TDn; dA ½dn; df �

8>>>>>><
>>>>>>:

ð9Þ

where TDi, {i|iAZ,iA[0,n]} is the quantity of details in LODi. di,
{i|iAZ,iA[1,n]}is the viewing distance for switching to LODi. As
a 75% probability of difference detection while red pixels indicate a 95% probability

rences.)

ages of sampling.
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Fig. 10. The statistics of the number of pixels of the object in the rendered image (left); the PM value (right).

Fig. 11. The perceptual metric function generated by curve fitting. Fig. 12. The result of LODs design.

Q. Zhu et al. / Computers & Graphics 34 (2010) 55–6560
discussed before, d1 is the start point of viewing distance. Within
(0, d1), part of the model occupies most of the screen, and is the
dominating object for visual perception. The typical application
under this circumstance is the observation of the details or the
internal structure, which needs a model of the highest resolution.
Also, since the render cost for displaying part of the model is not
huge, it allows fast visualization. Therefore, the quantity of details
of the original object is defined as TD0.

After defining LOD0, the remaining work is the defining of LOD1

to LODn. In order to keep the continuity of perception, the quantity
of details in LODi must constantly be more than the minimum
needed for representing the same perceptibility as in the original
model. As shown in Fig. 5, the red solid line represents the
minimum quantity of details that exactly meets the minimum
needs of perception, which is termed the optimal LOD. The
horizontal black line represents TDi. At a given viewing distance
di+Dd, the difference between the quantity of details of discrete
LOD and optimal LOD is the redundancy detail (RD), as shown in
Fig. 5, which is calculated by equation

RDðdiÞ ¼ TDðdiÞ � TDðdiþDdÞ ð10Þ

where TD(d) is the quantity of the details of the optimal LOD at the
viewing distance d, and TDi=TD(di).

Based on the previous definition, perceptual metric can be
employed as a ratio that indicates the proportion of the perceptible
details in the total details of the object. The redundancy can thus be
calculated by the product of TD0 and PM(d)

RDðdiþDdÞ ¼ TD0 � PMðdiÞ � TD0 � PMðdiþDdÞ ð11Þ

The gray region in Fig. 5 illustrates the total detail redundancy,
which can be calculated by the integral of RD over the distance
domain

Z df

d1

RDðdÞdx¼
Xn�1

i ¼ 1

�
TD0 � ðPMðdiÞ � ðdiþ1 � diÞ �

Z diþ 1

di

PMðxÞdxÞ
�
ð12Þ

Thereby, designing discrete LODs is equivalent to obtaining of a
set of viewing distances that minimizes the total RD. It is obvious
that when the total redundancy is minimized, the discrete LODs will
have the least data size while keeping the same visual fidelity as the
optimal LOD. Therefore, the discrete LODs are optimally designed.
5. Experimental analysis

5.1. Experimental description

Because of the complex geometry, a complicated building
model (the great shrine hall) in Chinese classical style composed
of 4398 components and 196,037 triangles was selected as the
test model. To reveal fully the details, the model was rendered
with the flat shade mode using OpenGL. The scene adopted static
light with a white background, and the FOV was 33.33 degrees.
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Table 2
The designed-viewing distances of the LODs for the great shrine hall (unit: meter).

Fac-ade LOD0 LOD1 LOD2 LOD3 LOD4

1 [0, 56.39) [56.39, 112.91) [112.91, 267.14) [267.14, 836.49) [836.49, 24500.1]

2 [0, 68.47) [68.47, 133.28) [133.28, 321.95) [321.95, 973.79) [973.79, 29747.6]

3 [0, 68.48) [68.48, 132.94) [132.94, 320.26) [320.26, 964.79) [964.79, 29750]

4 [0, 56.13) [56.13, 109.6) [109.6, 266.68) [266.68, 836.07) [836.07, 24387.2]

Table 3
The comparison plan, in which Equalequal interval I is 100 m, equal interval II is 200 m, and equal interval III is 300 m; exponential interval I is 2 and exponential interval II

is 3 (unit: meters).

LOD0 LOD1 LOD2 LOD3 LOD4

Our method [0, 68.48) [68.48, 132.94) [132.94, 320.26) [320.26, 964.79) [964.79, 29750]

Equal interval I [0, 68.48) [68.48, 168.48) [168.48, 268.48) [268.48, 368.48) [368.48, 29750]

Equal interval II [0, 68.48) [68.48, 268.48) [268.48, 468.48) [468.48, 668.48) [668.48, 29750]

Equal interval III [0, 68.48) [68.48, 368.48) [368.48, 668.48) [668.48, 968.48) [968.48, 29750]

Exponential interval I [0, 68.48) [68.48, 136.92) [136.92, 273.92) [273.92, 547.84) [547.84, 29750]

Exponential interval II [0, 68.48) [68.48, 205.44) [205.44, 616.32) [616.32, 1848.96) [1848.96, 29750]

Fig. 13. The rendered images of the simplified model (Fac-ade 3).

Table 4
The number of triangles—Fac-ade 3.

LOD1 LOD2 LOD3 LOD4

Our method 49,396 47,776 27,917 8801

Equal interval I 49,396 41,226 29,307 26,681

Equal interval II 49,396 29,281 21,063 12,543

Equal interval III 49,396 26,667 12,631 8783

Exponential interval I 49,396 47,780 29,313 15,729

Exponential interval II 49,396 30,299 12,747 4974

Q. Zhu et al. / Computers & Graphics 34 (2010) 55–65 61
The four fac-ades of the building model, extracted manually from
the whole model based on the orientation as illustrated in Fig. 6,
were analyzed in the experiment in which Fac-ade 3, the front fac-
ade, was selected to illustrate the detailed process.

The experiments were carried out using a 19 in TFT-LCD
monitor with a resolution of 86.27 dpi (1280�1024) and a
luminance of 200 (cd/m2). The observing distance v from the
observer’s eyes to the monitor was 0.5 m. This is a typical visual
environment for desktop applications. The results are also suitable
for a visual environment with monitors of lower resolution or
observation at greater distances. For monitors of lower resolution,
the quantity of the displayed details on the model will be reduced.
For observation at a greater distance, on the other hand, the
increasing spatial frequency perceived by human eyes will
decrease the quantity of perceptible details. As a result, if a more
conservative solution is needed, a higher resolution monitor and a
closer observing distance should be chosen. For another com-
monly used display device, namely a projector, though its
resolution is lower than the desktop monitor (from 5 to 30 dpi),
the observing distances are usually greater (from 5 to 10 m).
Therefore, the spatial frequency perceived by human eyes is
similar to that of the desktop monitors.

5.2. Vision simulation

To construct the filters, the CSF is mapped to the frequency
intervals. The maximum spatial frequency perceived by humans
from the monitor was calculated to be 14.82 cycles/deg (cpd) by
Eq. (13)

fmax ¼ 0:5fs ¼ 0:5ð2vtanð0:53
Þr=0:0254Þ ð13Þ

where fmax is the maximum frequency, which is down-sampled
from fs, the sampling frequency of the screen, at Nyquist rate of 0.5
cycles/pixels. The adopted CSF expression is widely used in many
other works [4]

AðaÞ ¼ 2:6ð0:0192þ0:144aÞexpð�ð0:144aÞ1:1Þ ð14Þ
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Fig. 14. Comparison of the results of different design plans.

Table 5
Cost—Fac-ade 3.

Cost

Our method 308643443.7

Equal interval I 815921235.1

Equal interval II 404717505.4

Equal interval III 309396290.2

Exponential interval I 497820713.8

Exponential interval II 187402764.3

Q. Zhu et al. / Computers & Graphics 34 (2010) 55–6562
Based on a similar approach to remove the influence of low-
frequency dip of the CSF [20], the coefficients with the spatial
frequency of less than 6.2 cpd, where the CSF reaches its
maximum, were not filtered. This approach can also be employed
to decide the proper level of DWT decomposition. When the
maximum frequency of level i of the decomposition was below
6.2 cpd, i�1 levels decomposition was adequate for CSF filtering.
As a result, two levels of DWT decomposition were adopted in the
experiment because the minimum spatial frequency, fmax/4, in the
second level of decomposition is smaller than 6.2 cpd.

Fig. 7 shows the results. It can be seen that most of the
differences between the original image and the processed image
either occur at sharp edges, which represent high spatial
frequencies such as the silhouette of sharp components, or at
gentle changes of pixel values, which represent low contrast such
as tiles. In general, there was little visible loss occurring.

The visible difference predictor (VDP) [22] and structural
similarity (SSIM) [23] were adopted to evaluate objectively the
performance of the vision simulation. The original rendered image
and the vision-simulated image were input and the indices are
shown in Table 1. Fig. 8 shows the output maps. The results
indicate that these two images are visually equivalent, which
proves the validity of the vision simulation.

5.3. LODs design

The domain of viewing distance was computed using Eqs. (2)
and (8); d1 was equal to 68.48 m and df was equal to 29,750 m. The
sampling range of viewing distance was set to [68.48, 1068.48 m]
because the projection size of the model decreases drastically at
the start of the domain, and when the distance is greater than
1000 m, the projection of the test model hardly changes any more.
The distance interval was set as 5 m to obtain sufficient samples
for the curve fitting of PM(d), as illustrated in Fig. 9. Five levels of
LOD were chosen as an example.

Fig. 10 (left) shows the statistical result of the number of non-
background pixels in the rendered images. The PM values,
calculated by (5) through the visual simulation process, are
shown in Fig. 10 (right). (If there are no special notes, d1 was set as
the start point of the x-axis in the subsequent descriptions.)

According to the shape of the sample data, an exponential
function as shown in (15) was adopted to implement the least
squares fitting of the PM values

f ðxÞ ¼ a expðbxÞþc expðdxÞ ð15Þ

The results were as follows: a=0.5588, b=�0.09722, c=0.1908
and d=�0.02061. The R-square was 0.9994 and the RMSE was
0.001761, which indicate the fitting is credible. The PM(d) curve is
shown by the red line in Fig. 11.

Assuming the switch distance for LODi is di, the total RD was
then calculated as follows:

X
RD¼ TD0 � ðPMð0Þ � ðd2 � 0Þ �

Z d2

0
PMðxÞdxþPMðd2Þ � ðd3 � d2Þ

�

Z d3

d2

PMðxÞdxþPMðd3Þ � ðd4 � d3Þ

�

Z d4

d3

PMðxÞdxþPMðd4Þ � ð29750� d4Þ �

Z 29750

d4

PMðxÞdxÞ

ð16Þ

The simplex method was chosen to find the minimum of the
above function and finally d2, d3, and d4 were obtained as 64.5,
251.8, and 896.3 m, respectively, as illustrated in Fig. 12. The
output viewing distances of LODs for the four fac-ades are shown
in Table 2. The results show that the optimized LODs were not
equally partitioned by viewing distance. The higher the detail
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Fig. 15. The comparison results of Fac-ade 3 (Eq represents equal interval and exp represents exponential interval).

Fig. 16. The comparison results of Fac-ade 1 (Eq represents equal interval and exp represents exponential interval).

Q. Zhu et al. / Computers & Graphics 34 (2010) 55–65 63
resolution, the shorter is the action range for the LOD model. The
rendering cost could thus be reduced based on common sense.

5.4. Comparative study

Several groups of typical viewing distances with equal
intervals as well as exponential intervals were used as contrasts,
as shown in Table 3. The widely used simplification method QEM
was selected to simplify the model according to the LOD design
[24], in which the half edge collapse operation was adopted in
order to keep the perpendicularity and parallelism features in the
fac-ades. For generating LODs that fit the observation at a given
viewing distance, the screen space error size of one pixel was
chosen to calculate the proper simplification threshold at the
viewing distance. Therefore, the LODs that keep the approximate
perceptibility could be generated. As illustrated in Fig. 4, if the
viewing distance d is given, the vertex–vertex distance Dd, which
is the threshold for simplification, can then be conservatively
calculated by

Dd¼ 0:0254d=ð2r � lÞ ð17Þ

Fac-ade models were then simplified based on the calculated
threshold at each viewing distance. Fig. 13 illustrates the rendered
images of simplified Fac-ade 3 based on our method. Table 4 shows
the statistics of the number of triangles for each LOD model in
different planes.



ARTICLE IN PRESS

Fig. 18. The comparison results of Fac-ade 4 (Eq represents equal interval and exp represents exponential interval).

Fig. 17. The comparison results of Fac-ade 2 (Eq represents equal interval and exp represents exponential interval).
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Fig. 14 shows the comparison of the results, which illustrates
the allocation of triangles along the viewing distance. An
approximate approach for estimating the rendering cost of LODs
was adopted, in which the cost of a LOD model is represented by
the production of its rendering cost and the active viewing
distance range. So the total cost of a collection of LODs is
calculated by the following equation:

Cost¼
Xi ¼ n

i ¼ 0

ðdiþ1 � diÞCi ð18Þ
where di is the switch viewing distance for LODi and Ci is the cost
for LODi, which is represented by the number of triangles. Then,
the rendering cost of results was calculated and the results are
shown in Table 5.

It is seen that the cost of our method is generally lower than
other cases, except for the last one. On the one hand, when the
model is under close observation, the complexity should be
reduced quickly when model moves further away because the
data size of LOD0 and LOD1 is often too large to be efficiently
rendered. On the other hand, when the model is far from the
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Table 6
The data size statistics—Fac-ade 1.

LOD1 LOD2 LOD3 LOD4 Cost

Our method 136843 135045 20884 6766 179485647.4

Equal interval I 136843 30857 20986 19058 468999425.2

Equal interval II 136843 20976 15686 9556 242551492.8

Equal interval III 136843 19052 9554 6498 172621727.6

Exponential interval I 136843 135043 21338 15690 388171221.8

Exponential interval II 136843 29899 15646 3216 104048049.2

The data size statistics—Fac-ade 2

Our method 149867 148369 27534 8982 314099783.5

Equal interval I 149867 141809 29902 27220 831857446.4

Equal interval II 149867 29886 21246 12754 411074896.5

Equal interval III 149867 27222 12846 8984 315532114.1

Exponential interval I 149867 148357 29904 15912 503399751.7

Exponential interval II 149867 130910 12956 4980 229219396.2

The data size statistics—Fac-ade 4

Our method 136726 135022 20875 6511 172692418.7

Equal interval I 136726 30820 20973 19011 465706571.8

Equal interval II 136726 20959 15635 9503 240180358.2

Equal interval III 136726 19005 5905 6243 164770970

Exponential interval I 136726 134998 21331 15643 385244178.9

Exponential interval II 136726 29862 15599 3248 104227327.9
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camera, the complexity should be reduced more slowly because
the current data size of LODs is smaller. The costs of Equal interval
III and Exponential interval II are similar or even smaller than the
cost of the proposed method. However, the switching between the
first two LODs in these results was much slower than with our
result, which would lead to a worse performance if the data size of
the model was relatively large. In addition, the simple practice of
QEM may also bring about errors for this evaluation. Following the
principle of human perception, new approaches should be
proposed in the future to simplify the model according to the
generated difference map, as illustrated in Fig. 7.

Results of the simplified fac-ades are shown in Figs. 15–18. The
statistics of number of triangles, as well as the costs, are shown in
Table 6.
6. Conclusions and remarks

Keeping in mind the difficulty of precise quantitative design of
3D geometric LODs, this paper presents an analytical concept of
perceptual metric; related novel algorithms for PM extraction and
LODs design are also introduced. According to this kind of
quantitative analysis, the redundancy of perceptual detail be-
tween LODs could be minimized, which facilitates the automatic
generation of discrete LOD models. The result has great potential
to play an important role in guiding the simplification of discrete
LOD models. At a given viewing distance, the geometries
contributing to the imperceptible details in the rendered image
can be located for further simplification. Similar approaches have
been proposed recently [25,26]. Future research will focus on the
PM-driven model simplification for discrete and continuous LOD
model generation of complicated textured 3D building models.
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